INTRODUCTION

Earlier we introduced you to a variety of tectonic settings and we described geologic structures that are commonly associated with these environments. To put rock deformation in context, we did not limit our descriptions to structural features of these environments, but also included information concerning petrologic and sedimentologic features that accompany deformation. These discussions focused on responses to plate motion at the three basic types of plate margins, and ranged from what happens during the inception of a divergent margin (rupturing) to the death of a convergent margin (collision ± strike-slip). The topographic expression of tectonism in these various settings can be dramatic, as it results in regional mountain belts of deformation, metamorphism, and igneous activity (Figure 15.1). These belts are known as orogens, and the set of processes that create them is called orogeny. Much of what is known about plate tectonic processes comes from the study of recent plate margins, rifts, and collision zones. Plate interactions, however, leave permanent scars in the lithosphere, even after the associated physiography has long since eroded away. Through field study we are increasingly able to get a good understanding of ancient plate tectonics in our planet’s history, as explored here and in essays that contain introductory, regional perspectives.
We believe that it is best and most interesting to focus on natural examples to understand the nature and consequences of plate tectonic processes. Thus, we devote the final chapter of this text to case studies of major deformation belts around the world. Each study is written by one or more experts, in his or her own style, so that you will get a flavor of how different geologists think and how they approach tectonics. When you talk with these seasoned geologists, chances are that you quickly share their excitement about the areas in which they work. This excitement may stem from discovering key outcrops for understanding regional deformation or new insights into an aspect of fundamental significance for lithospheric evolution. The experts have tried to capture some of their excitement in these essays, rather than aiming to offer comprehensive review papers.

When you collect additional reading material on the areas described here, or on other areas, you will rapidly learn that views vary and, sometimes, that they contradict. The observations, of course, stand, but alternative interpretations are often possible, especially in the case of regional geology. You will find that the essays emphasize large-scale processes, but also that the interpretations are often based on small-scale observations. This relationship between observations on varying scales mirrors the approach we have taken throughout this text: processes on different scales are not separate and unrelated entities; rather, they form part of an integrated framework for studying the deformation of rocks and regions.

GLOBAL DEFORMATION PATTERNS

The most impressive deformation features that are exposed at the Earth’s surface are concentrated along relatively narrow belts at modern or active plate margins (Figure 15.2). Today’s active mountain belts, such as the European Alps (A), the Himalayas (Ti), the North American Cordillera (Co), and the Andes of South America (A), mark convergent plate boundaries. From a human perspective the term “active” mainly means earthquakes and volcanoes, but from a geologic perspective this term implies continuing relative displacements at these margins on the timescale of millions of years. Ancient mountain belts, such as the European Caledonides (Ca), the North American Appalachians (Ap), Eurasia’s Altaids (Al), and Australia’s Tasmanides (T), were formed at plate boundaries and oceans that have all but disappeared; only remnants of subduction are preserved in these orogens as ophiolites, volcanic arcs, oceanic plateaus, and so on. These remnants are often able to provide us with much of the area’s geologic history. Even farther back, into the Precambrian, we no longer see the mountainous physiography of orogens preserved; that is, there is little or no related topography. Yet these flat, inactive regions (called cratons) include deeply eroded levels of once vast mountain belts that formed from tectonic processes perhaps similar to those active today. Later in this chapter we speculate on some contrasts between modern and ancient orogens, which is a topic of great interest. For reference, we include the geologic timescale at the end of this chapter.

Not all deformation, however, takes place at plate margins. Some of the great historical earthquakes occurred within continental interiors; for example, the 1811–1812 New Madrid earthquakes in central North America. Likewise, significant volcanic activity can occur within plates, such as Hawaii. Evidence for intraplate tectonic activity is also preserved by large intracratonic basins, such as the Paleozoic Michigan Basin that contains as much as 5 km of sediment, by arches, and by massive rift zones, such as today’s East African Rift and the Proterozoic Midcontinent Rift of North America. Thus, we conclude the set of essays with regional perspectives by discussing the fascinating deformation features of plate interiors, particularly the Midcontinent area of the United States (home to the authors).
The continental regions of Earth preserve a long history, going back as far as 4 Ga. This is in marked contrast to today's ocean basins, where the oldest rocks are on the order of 200 Ma. It is perhaps ironic that, although many of the fundamentals of plate tectonics were formulated from the study of today's ocean basins, we uncover Earth's ancient history by focusing our attention on the continents. When reading the essays you will find that we have obtained a remarkably detailed understanding of this ancient history, especially for the Phanerozoic, and increasingly for Proterozoic times also. The Archean, however, remains much less well understood, and its tectonic history is quite speculative. This temporal pattern of knowledge merely reflects the situation that, as rocks become sparser and have more complex histories with age, our ability to study ancient tectonics diminishes. Yet, the pursuit of this understanding poses new challenges to field and laboratory geologists alike.

WHAT CAN WE LEARN FROM REGIONAL PERSPECTIVES?

The next several paragraphs contain a lot of information, as you will see. Each essay in turn condenses even more information in only a few pages. So, the answer to the question posed in the header of this section would be: a lot! But it makes no sense to just read all the essays and memorize the respective histories of these areas. Essays should be considered a first introduction to the continental geology of the world, which may serve several other purposes. We identify just a few.

- The essays get you rapidly acquainted with fundamental geologic aspects of some area of the world. This probably means that you will concentrate on one or two essays as a basis for a more in-depth study of a region.
- The essays show the various approaches that may be taken in the study of (ancient) deformation belts. When you look beyond the details of individual areas, you will find that stratigraphy, geochronology, geochemistry, geophysics, and other earth science disciplines need to be integrated to obtain a full understanding of a region's tectonic history.
- The essays allow you to recognize fundamental features that are common to most areas. We next look at orogenic architecture as an example of one of these features.

![Figure 15.3 Idealized section through a collisional orogen, showing foreland fold-thrust belt, metamorphic hinterland (with nappes), inverted passive margin, strike-slip plate boundary, accreted volcanic arc, accreted microcontinent, and sutures (S). Most if not all mountain belts contain several of the features shown in this ideal section, but none probably contains all of them. The diagram is based on observation in Phanerozoic mountain belts; most Precambrian belts preserve only the deeper crustal levels. [20.3]](image_url)

Orogenic Architecture

Orogenic architecture describes the generalized geometry of a mountain belt (Figure 15.3). Whereas the details of each individual mountain belt differ, they have many features in common. Generally you will find a deformed, originally wedge-shaped sedimentary sequence that was deposited at the stable continental margin. This sequence may contain marine carbonates if the area was located in the equatorial realm. Slivers of ophiolite, a rock assemblage containing ultramafic (mantle) rocks, gabbros, dikes, and pillow basalts, are remnants of ancient ocean floor1 that are also preserved in an orogen. In fact, ophiolites are critical evidence for the activity of modern-day plate tectonics in ancient mountain belts. Granites, associated with volcanic arc formation or the melting of overthickened crust, are variably present. As the orogen evolves, marine clastics (sometimes called flysch) that are derived from the eroding mountain belt are deposited in foreland basins and at the waning stages of orogenic activity coarse continental clastics (sometimes called molasse) are laid down. In young orogenic belts we find that isolated slivers of basement rocks (also called crystalline basement) have become exposed by faulting. In some cases, mantle rocks are similarly exposed. In ancient orogens this basement component significantly increases, and the sedimentary sequence is mainly preserved in metamorphosed and highly deformed rocks (called paragneiss). The oldest mountain belts consist nearly entirely of deformed midcrustal to lower-crustal rocks of magmatic origin (called orthogneiss). In a way, these ancient orogens expose the roots of deeply eroded mountain belts and, in combination with modern regions, they provide a fairly complete section through orogenic crust.

Deformation is usually polyphase and each phase can contain several fold generations. Within a single orogenic phase, the deformation sequence may look something like the following: Early structures are thrusts that repeat stratigraphy, or large recumbent folds that repeat and locally invert stratigraphy (called nappes). These thrusts often root in a detachment zone (or décollement) at depth. In metamorphic regions this stage has produced widespread transposition. These early structures are overprinted by upright folds that may contain an axial plane foliation, and later fold generations are commonly present as kinks and crenulations. These contractual features locally overprint evidence of an initial rifting stage (normal faulting) that formed at the passive plate margin. In addition to early rifting, extensional structures often form during the later stages of mountain building and during unroofing (syn-orogenic and post-orogenic extension, respectively; not shown in Figure 15.3).

Orogenic belts are often curved in map view, which may reflect the shape of the original plate margin, may be a result of rotation by indentation (called oroclinal bending), or may represent differential displacements along trend. Blocks with distinct lithologies and deformation history (lithostratigraphic blocks, nowadays called terranes) may be incorporated in the mountain belt, reflecting the accretion of oceanic plateaus, ocean islands, or fragments of disrupted continents to the active plate margin. The boundaries of these blocks are called sutures and they may be marked by ophiolites, indicating that ocean floor originally separated the blocks. Other deformation characteristics, such as progressive outboard-younging of deformation, may be present and you are encouraged to search for them in the essays that follow. While you may at first be interested in the geology of only one area, a knowledge of
other areas often leads to understanding your own particular region and offers alternative views; that is why we need to study the literature and that is why we offer these regional perspectives.

SOME SPECULATION ON OROGENIC STYLES

Most geoscientists accept the notion that earlier in Earth’s history the mantle was hotter overall than it is today, because the young Earth held more of its primordial heat and had a greater concentration of radioactive elements than it does today. For example, decay of radioactive elements produced three times as much heat at the beginning of the Archean and about 1.8 times as much heat at the beginning of the Proterozoic as it does today. Thus, mantle convection in the younger Earth was probably more vigorous than it is today; but whether a hotter, more vigorously convecting mantle caused young continents to be warmer than those of today remains a point of debate. If excess heat of the Earth’s interior was lost, in part, by conduction through the continents, then the continents must have been warmer. However, if the additional heat of the young Earth was lost through convection involving oceanic lithosphere (because spreading rates were faster, or spreading occurred at a greater number of ridges, or there were a greater number of hot spots), then the continental crust may not have been substantially hotter. Researchers who argue in favor of the idea that the crust was not substantially hotter in Precambrian time, point out that young continents lay above a thick lithospheric root and thus would have been insulated from the convecting asthenosphere. Uncertainty over the stability of the mantle beneath continents complicates interpretation of the thermal conditions of continents. The deep root of thickened, cooler mantle that formed beneath collisional orogens may delaminate, at which time hot asthenosphere flows against the base of the continent, causing an increase in heat flow into the continent. Delamination would be more likely in the Archean if mantle convection was more vigorous, which may explain the prevalence of high-temperature metamorphism in Archean terranes.

![Figure 15.4 Schematic cross-sections that contrast collisional orogens of Archean/Paleoproterozoic time with those of Phanerozoic time. The shaded layer represents supracrustal rocks, the white layer represents basement, and the patterned lens represents a mid-crustal weak zone. (a) Phanerozoic collisional orogen with adjacent foreland basin. (b) Archean/Paleoproterozoic collisional orogen. The thin horizontal line above the orogen defines the comparative height of the Phanerozoic orogen. [20.4]](image)

The height of a mountain range on Earth depends largely on the strength of the crust, because crust collapses and spreads laterally under its own weight if the gravitational load of the elevated region exceeds the strength of rock at depth, and exceeds the magnitude of the horizontal tectonic forces that hold up the range; we earlier discussed this as orogenic collapse. Thus, a decrease in crustal strength would mean that a mountain range could not grow as high during contractional orogeny, because a weak crust would allow the range to collapse and undergo lateral spreading before it built up as high mountains. Since the strength of the crust decreases as temperature increases due to the temperature dependence of deformation mechanisms, then crust with a higher geotherm will be weaker than crust with a lower geotherm. This contrast would imply that the width and height of Precambrian orogenic belts would be less than those of Phanerozoic orogenic belts for a given amount of horizontal convergence (Figure 15.4). Thus, the cross-strike geometry of mountain ranges might have been different in the past—Archean and Early Proterozoic orogens may have contained wider belts of plastically deformed rock.

In addition to geometric observations, geologists increasingly recognize interconnections between the atmosphere, climate, erosion and tectonics. Can changes in environmental conditions affect regional geology over time? If atmospheric circulation and climate were significantly different in the past, then ancient orogenic belts may have been different, both morphologically and structurally, from modern orogens. Earth’s early atmosphere may have been more corrosive than the modern atmosphere, because of the greater concentration of volcanic gases. If so, rainfall might have caused chemical weathering at rates more than today. If the Archean and early Proterozoic atmosphere was richer in CO2 than the Phanerozoic atmosphere, the Earth was probably warmer most of the time, so atmospheric circulation and oceanic evaporation might have been faster, leading to greater rainfall. Because continents were smaller in Earth’s early history, storms would not be as strong as they are today. In response, exhumation rates would be faster and isotherms in the crust would rise significantly. To replace the mass deficit resulting from erosion, rocks metamorphosed at great depth would be rapidly brought to the surface, producing wide metamorphic belts as relics of orogens. When tectonism eventually ceased, the next succession of supracrustal rocks would be deposited directly on high-grade gneiss. Further, foreland fold-thrust belts would be smaller, basement structures would be reactivated in the foreland (because uplift of isotherms would bring hot rocks to the surface in the foreland), and deep foreland basins would not develop. Although far from proven, these speculations offer an interesting framework for exploring ancient orogens and past tectonic activity. Try to keep that in mind when reading the regional essays.

REGIONAL ESSAYS

The geologic map of the world makes for a beautiful, colorful mosaic, matching modern art (Figure 15.5). The Earth’s surface preserves rocks with a geologic history from Archean times to today (see [geologic timescale](http://psgt.earth.lsa.umich.edu/chapter/TectonicVignettes/globalview.html) below), and intricate tectonic histories that reflect the settings we examined in earlier chapters.
Understanding global geology, therefore, is better examined by looking at select areas (marked in Figure 15.2), which we describe in essays below. These essays are perspectives by regional experts and are not intended as a comprehensive review of each area. Instead, use them to get a sense of the geology of these areas, the excitement of discovery, and as a platform for further exploration.

THE TECTONIC EVOLUTION OF THE EUROPEAN ALPS AND FORELANDS - Stefan Schmid
THE TIBETAN PLATEAU AND SURROUNDING REGIONS - Leigh Royden and Clark Burchfiel
TECTONICS OF THE ALTAIDS: AN EXAMPLE OF A TURKIC-TYPE OROGEN - Cêlal Sengör and Boris Natal’in
THE TASMAN OROGENIC BELT, EASTERN AUSTRALIA: AN EXAMPLE OF PALEozoIC TECTONIC ACCRETION - David Gray and David Foster
THE NORTH AMERICAN CORDILLERA - Elizabeth Miller
THE CENTRAL ANDES: A NATURAL LABORATORY FOR NONCOLLISIONAL MOUNTAIN BUILDING - Richard Allmendinger and Teresa Jordan
THE APPALACHIAN OROGEN - James Hibbard
THE CALEDONIDES - Kevin Pickering and Alan Smith
TECTONIC GENEALOGY OF NORTH AMERICA - Paul Hoffman
PHANEROZOIC TECTONICS OF THE UNITED STATES MIDCONTINENT - Stephen Marshak and Ben van der Pluijm

CLOSING REMARKS
The splendor of mountain belts has long attracted the interest of geologists and the general public, both as objects of scientific investigation and for their natural beauty. You can imagine that a vast body of literature exists on regional deformation after some 150 years of regional mapping and associated laboratory work. The advent of the unifying concept of plate tectonics in the 1960s also coincides with a publication explosion in the Earth sciences (all sciences, in fact). Earlier we already mentioned the enormous volume of current literature. Mercifully, each of the following essays lists only some of the more informative references and makes no attempt to offer a comprehensive reading list. To these references we add general textbooks in this chapter, which complement the information in the essays and include areas and topics not covered here. With all this information in hand you should not find it too difficult to explore the literature on your particular area or topic of interest. Of course, there are many other regions of interest in the world beyond those described in the essays; our choices merely represent a sampling of important and reasonably well understood areas. New insights continue to be discovered everyday in these already well-studied regions, and many are waiting to be discovered in lesser known areas. As every scientist will tell you, our increasing knowledge (in our case, of deformation and tectonics) is usually accompanied by an increase in the number of unanswered questions. This ensures a continued challenge for future generations of geologists.

Happy reading!

THE GEOLOGIC TIMESCALE
ADDITIONAL READING